
This little book provides you with the 
newest patterns and methodologies for 
purposeless PHP residues. It also lists 
counter arguments should your 
syntactic salt ever come into question.

Oh and yes; this list is meant to be 
amusing and partially sarcastic.

Effective PHP
Cargo Cult 

Programming
and enterprisey coding standards

No need to agree. In fact some points are meant to be controversial. 
The goal of this overdone rant is to make you reassess, not redeem.
Many patterns are useful in some situations. But corner cases should 
not destine the default methodology. WUT



Effective PHP Cargo Cult Programming

Overview
Weak typing sucks...............................................................3

E_NOTICE is a serious bug..............................................3
Must use === or else!.......................................................4

OOP only!!!1!.........................................................................5
PHP5 is so much better than PHP4................................6
Access modifiers are more enterprisey..........................7
Shallow setters and getters............................................8

'Microoptimizations'...........................................................9
Security...............................................................................10

mysql_query is top-notchy............................................10
XHTML-strict all the way....................................................11
Upcoming Topics...............................................................12
Enterprisey coding standards............................................12

someCamelMethods......................................................12
\deeply\nested\name\spaces........................................13

FAQ and Excuse Chapter....................................................14
Afterword.......................................................................17



Effective PHP Cargo Cult Programming

Weak typing sucks
PHP is actually a weakly typed language. Nowadays we 
struggle against this unfortunate misfeature.

E_NOTICE is a serious bug
You have to litter your code with isset().

– This totally helps security.

– And it's needed for strict E_STRICTINESS.

E_NOTICE messages are really debugging notes. But as 
cargo cult programmer you must treat it as high-priority 
defect and work around. Always.

Frequent use if isset() helps in various ways:

– Makes E_NOTICES go away.

– Adds more code that gives a secure look.

– Hides actual bugs at runtime.

Imagine following code:

if (isset($_SERVER["SERVAR_NAME"]) && 

Through clever combinations of copy & pasting and 
hiding the problem with isset, these kind of bugs are 
more difficult to uncover. Not that the server name was 
much likely to be unset in any case.

Old-school PHP usage would make the mistake obvious. 
That's what they're for. But better hunt E_NOTICEs bugs.



Effective PHP Cargo Cult Programming

Must use === or else!
PHP is unreliable. You never know what you get. Hence 
it's imperative to be explicit.

Yes, always.

Strictly speaking, there are only a few functions (strpos) 
where you have to differentiate e.g. between boolean 
errors and integer result values.

But your code gets so much more enterprisey if you take 
the time to add === identity checks in all if constructs:

if (headers_sent() === true) { ...

You cannot leave boolean evaluation to PHPs weak type 
system. Override it. Embrace your anger.

But especially PHPs string handling should give you the 
creeps. If $_GET["what"] contains "0things" this should 
not be handled as zero or boolean false. This might not 
be what the user wanted. Check for === "0" and strlen() 
else. Avoid automatic type juggling, which will always do 
the wrong thing.



Effective PHP Cargo Cult Programming

OOP only!!!1!
It is imperative that your applications are 100% object-
oriented. Only OOP allows programming large-scale, 
cloud-based, enterprisey, high-scalability, maintainable, 
AJAX compatible, RESTful and very secure applications.

Oldschool PHP programming with only functions leads to 
spaghetti code. Ragequit any discussions about the topic 
by equating procedural code with noodles.

If you are unsure about the benefits of OOP clenchbanger 
code, just have a visit at phpclasses.not. It's a marvellous 
collection of supra high quality utility libraries that are 
totally designed to be classes and not just functions 
wrapped in them.

– classes are better than functions

– objects are better than procedural code

– classes and objects are the best match for just 
about everything 

And if you have a feature that could be implemented best 
as function with a simple in-out API, then don't. That 
would be a wasted opportunity to apply one useful OOP 
design pattern atop the hip class-based paradigm.

Also, if you don't package everything into classes you will 
lose credibility in the eyes of your fellow co-developers. 
They will assume you don't know the OOP if you can't 
apply it every time without any second thought.

Meh, this topic might require a book of its own.



Effective PHP Cargo Cult Programming

PHP5 is so much better than PHP4
Alas, the differences in the type system and API are 
mostly gradual. But cargo culters should make a big deal 
out of these two versions being totally different 
languages.

Embrace PHP5 constructs without any particular use 
case.

These are the useful advancements of PHP5:

– unified PDO database interface

– SPL constructs

– revamped XML functionality

Avoid them, and instead strive for these:

– __construct() method name, because it's new

– private and protected attributes / methods

– E_STRICT, your code must be strictly E_STRICT

+20 bonus points if you are one of the developers who 
dismisses code based on compatibility. "Oh noees, it still 
uses teh PHP4!!!!"



Effective PHP Cargo Cult Programming

Access modifiers are more enterprisey
When called into question just say: En-cap-su-la-tion. 
That's the best buzzwordy rebuttal.

The access modifiers public, private, protected 
must be thouroughly used (1/3 each) to proof your code 
from running under PHP4. These keywords were 
introduced in PHP5 to overcome complaints that the 
language is not fully object-oriented. And completely 
solving all OOP problems they do:

– Prevent stealing of precious precious attributes.

– Malicious co-programmers setting wrong types.

– Secret method sauce stays secrit.

When copying these essential features from Java/C++ it 
was assured that all inherent advantages from compiled 
code apply:

– private attributes cannot be removed again and 
are strictly enforced by the JVM PolicyManager.

– Invalid accesses are catched by the compiler and 
don't just show up at runtime to blow up your 
application. (But avoid polymorphism and 
inheritance just in case).

Agreed-on _underscore conventions do totally not suffice!
Just look at Python. What a mess! To fend off all your evil 
co-programmers you need access modifiers. Else APIs get 
exploited and you can nevermore totally overhaul class 
interna without leaking useful new functionality. Yuck.



Effective PHP Cargo Cult Programming

Shallow setters and getters
Restricting all object attribute access is also important so 
you have a reason to introduce the most important OOP 
concept of all:

function getTitle($title) {

return $this->title;

}

function setTitle($title) {

$this->title = $title;

}

You see, they wouldn't strictly be necessary. And as cargo 
culter you must ensure that they are completely 
purposeless. Remember that they are needed just in case 
you wanted to implement any checks. At all. Or Later.

For application performance it's however inadvisable to 
do any type checks or apply format constraints. The 
setter must always copy the data verbatim. The getter 
should have side-effects however and if possible.

Note that you could use the magic __set() method to 
easily implement the type checking support that's amiss 
in PHP, e.g. by using a $_typemap = [name=>type] array.

But remember that this is way too scripting languageish, 
even discouraged in Python. And it's why we use setters 
and getters - which were originally introduced for Java 
Beans. (Something with RMI and data hiding and binary 
representation, a dire necessity in PHP.)



Effective PHP Cargo Cult Programming

'Microoptimizations'
This would be no decent PHP recommendation without 
educating dear readers about serious SEO runtime and 
performance optimization techniques.

13.8%
Yes that's right. Single quotes give a whopping 13-14% 
speedup for your PHP scripts.

That is, if you have more then 100M strings in your 
application and constantly pipe new ones into eval(). Or 
that's at least how I got to measure it. The effect takes 
some time to show. (Yes, I've really run that test.)

But there you have it. It's btw not the compiler, but the 
"tokenizer" which 'tokenizes' strings. And as a matter of 
fact, 'single' quotes require significantly less work than 
"double" quotes. These things are called so for a reason.

So before you start denormalizing your database, or 
reduce database queries for that matter, begin with the 
optimization technique that trumps them all.

Single quotes should be in your enterprisey coding 
standard. It's such an obvious scalability gain!



Effective PHP Cargo Cult Programming

Security
Too much of a good thing...

mysql_query is top-notchy
What could possibly be wrong with a method that all 
PHP tutorials since 1997 recommend?

mysql_query is the de-facto standard for interfacing with 
databases in PHP. Hence it must be used. Everyone does.

The only thing you can improve on it is adding an object 
wrapper and call it database abstraction. Certainly 
unneeded are any fancy methods to avoid SQL exploits.

Security by cautiousness. It's sufficient to write 
mysql_real_escape_string() once in a while. You'll 
certainly take care to be diligent with it. No better 
method for security in that area has yet been invented.

Except PDO. But that's entirely unreasonable to be used. 
Too much overhead. And parameterized SQL is certainly 
hard to get a grasp on, when mixing up commands and 
values into an SQL string are that simple in PHP. 

Trust the herd.



Effective PHP Cargo Cult Programming

XHTML-strict all the way
You know what's holding the web application business 
back? That's right, procedural HTML.

It should be common knowledge by now that HTML is 
not a real standard, or at least not based on real 
standards (lets disregard SGML as too fancy). It's only 
XML from here on out.

Must use XHTML-Strict with E_STRICTINESS in XPHP.

The obvious advantage of XHTML is that it's hip. It adds 
some other things that we must take care to use right:

– The MIME type must still be text/html, so our 
XHTML-strict is just a fancy serialization but easily 
understood by all browsers and those that can't.

– It's forbidden to use any other XMLNS in our 
XHTML. We just like the X, not the XML use cases.

– Use target="_blank", complain about it's absence 
in the XHTML-strict standard, yet deploy it.

– Embed some Google Adsense script tags that use 
document.write in our "XHTML" document.

– Since just not utilizing it or using the right MIME 
type doesn't add any benefit, it's imperative to add 
a shiny XHTML badge. To show off competency.

Outright disregard HTML4. It's like totally old and PHP4.

And HTML5 won't be usable before 2023 when it's 120% 
standardized. And IE9 is the yardstick for everything.



Effective PHP Cargo Cult Programming

Upcoming Topics
– patterns

– MVC MVC MVC, Beetlejuice Beetlejuice Be...
– fake singletons, unproductive factories

Design patterns are a great way to enterprise up your 
applications. The more the merrier. If your coding style 
starts to look like J2EE and has lots of Fecades and 
AbstractFactory classes you are cloning it right. It also 
helps if the problems you're trying to solve don't exist.

Enterprisey coding standards
No publication on PHP was complete if the author didn't 
give you well-reasoned coding style advises.

someCamelMethods
Java uses it all over the place. Must be good. Let's too.

RunningWordsTogether is not only an established 
practice in the Wiki scene , but also a defacto standard 
for enterprise software development. And that's the 
glamour we should strive for.

The main reason for its use is saving a single character. 
Using underscores in method_names only brings a 
disregardable readability enhancement, so let's disregard 
it. Also it's not sensible to orientate method names on 
the programming language base functions. It's OOP, so it 
must use something better! addSomeOtherRemarkHere();



Effective PHP Cargo Cult Programming

\deeply\nested\name\spaces
A long overdue language construct was recentely 
introduced. Let's use it real quick and ferociously!

PHP.net developers looked to Java and C++, but adopted 
neither syntax. It really came down to parser fixing woes 
rather than cogitated syntax considerations. Some people 
now call PHP a laughing stock, but we prefer the term 
"special needs language".

Anyway, the namespace backslash helps in various ways.

– It semantically encourages directoritis, mapping 
classes 1:1 onto files. (Java does it too, right?)

– It hasn't really Java-like semantics. But that's what 
the recommended namespacing schemes mimick.

Originally namespaces were intended to reduce conflicts. 
A single namespace would suffice for that. But as cargo 
culters we're not happy until the problem is oversolved in 
a major eye-straining way. And rightly so, instead of the 
old Long_Class_Names we've got:

\vendor\Short\Class\Names;

Ideally namespaced classes could be aliased and become 
shorter than the_old_variants. But you see, we only want 
namespaces to choose unimaginative and highly generic 
class names within. So the 'use' advantage for practical 
purposes is out of the window, once every namespace 
repeats the same set of undescriptive class names. 
Instead these dull class names are to be used with their 
fully qualified namespaces everywhere. Whooho!



Effective PHP Cargo Cult Programming

FAQ and Excuse Chapter
I'd probably get too much hatemail, so I'll rather add 
some relativizations right away. Less sarcasm from here.

Why so serious?

No. This is mostly a fun list. It highlights a few current 
PHP fallacies.
It's about thoughtless construct copy&pasting and 
buzzword-reasoned syntax usage. Not about forbidding 
them.

But I must use isset!

Sure you do. NULL is a proper value and should play a 
role in your application logic. The section on isset 
discusses its officious use. Once the isset construct 
decorates all variable references, you have defeated the 
purpose of the debug error level (which E_NOTICE is). It 
then likely obfuscates real problems and can obstruse 
debugging. And it's syntactic salt if used under the 
assumption of raising security or code cleanliness.

But it can't be false if everyone does it?

I hope note. Actually I'm sure not everyone has crowd-
sourced critical thinking and sensible coding practices.

It's a common misconception that widespread equals ok.



Effective PHP Cargo Cult Programming

How dare you not like OOP ?!!

Well why, in fact I do. It's just the spilling misdesigns and 
purposeless applications I don't.

Why shouldn't encapsulation require access modifiers?

Access modifiers have their origin in compiled languages. 
Bar pointer workarounds and allowed reflection they are 
enforcable there. In all-sourcy PHP they might as well be 
comment decorators. In fact most other scripting 
languages run well on conventions like the underscoritis 
prevalent in Python and PHP4 before. This is sufficient for 
programmers behaving as adults. A resoned explanation 
or useful API better dissuade from object interna access.

Encapsulation is about functionality compounds, not 
attribute misuse paranoia. Type constraints are rareley 
employed (and wouldn't make much sense in a weakly 
typed language anyway). And the presence of shallow 
setters speaks for itself.

It's only mentioned here because public/private/protected 
are treated like semicolons by many PHP programmers, 
when the safety reasoning is mostly hypothetical.

Like the word "enterpisey" much?

But it sounds so nice.

And it's the best description of what some syntactically 
raped coding patterns look like.



Effective PHP Cargo Cult Programming

So what's the mysql_query bashing about?

I've recentely seen a lot of uninformed denial around 
PDO. Many people claim it's difficult to use or understand 
or some other random excuse. But as a matter of fact, it 
frequently simplifies queries. It particularily obviates 
manual and bug-prone escaping. Why people refuse to 
migrate off oldschool SQL concatenation is beyond me. 
It's clearly a clinging to outdated practices and an 
ingrained worse-is-better mentality.

Can you knock off the namespace syntax hate?

Not. This syntax choice was retarded back then when it 
was done in that afternoon IRC session. And it remains 
retarded three years later. Valid complaints don't vanish 
from sitting it out. Surprise.

Meanwhile magic-quotes-2.0 outcomes start to show. 
Framework developers are clearly obsessed with the 
syntax. And mapping directories onto √ code and class 
identifiers is an implementation smell.
Humdrum class names became the standard, use isn't 
used, and name aliases can't alleviate it sensibly. It all 
adds mostly ambiguity atop an ill-conceived workaround.

What's "cargo cult programming" anyway?

Mimicking other peoples coding methodologies without 
understanding the original intention or if it's applicable 
to the current environment. WikiPedia has pictures.



Effective PHP Cargo Cult Programming

Afterword
Oh my. The FAQ wasn't really toned down. So let me 
iterate the main point of this rant again.
I realize it reads like flamebait when critizizing these 
pretty widespread coding conventions. Also the name 
calling doesn't help much either. - Even though "cargo 
cult" means pretty much unreasoned pattern adoptions.

Anyway, there is no point in getting all worked up about 
the topics. If you are using them in any of your 
applications, fine. At least it follows common practices 
and its prevalence makes it therefore easier to read.

However it's a good idea to understand where some 
constructs came from, what kind of problems they were 
originally intended to solve. And also placebo usage isn't 
wrong per se.

In conclusion, if you want to comment or counter argue, 
please go ahead. This fun ebook is meant to start an 
overdue controversy.
It's helpful if you can dig out some nice example code, 
explaining where a pattern is actually useful. If you need 
half an hour to find an example, it's however very likely 
not relevant. Corner cases aren't helpful as reference for 
standard aspiring coding patterns.

And thanks for an open mind and reading that far!

Yeah, all to the bottom.

That's here.

End.


	Weak typing sucks
	E_NOTICE is a serious bug
	Must use === or else!

	OOP only!!!1!
	PHP5 is so much better than PHP4
	Access modifiers are more enterprisey
	Shallow setters and getters

	'Microoptimizations'
	Security
	mysql_query is top-notchy

	What could possibly be wrong with a method that all PHP tutorials since 1997 recommend?
	mysql_query is the de-facto standard for interfacing with databases in PHP. Hence it must be used. Everyone does.
	The only thing you can improve on it is adding an object wrapper and call it database abstraction. Certainly unneeded are any fancy methods to avoid SQL exploits.
	Security by cautiousness. It's sufficient to write mysql_real_escape_string() once in a while. You'll certainly take care to be diligent with it. No better method for security in that area has yet been invented.
	Except PDO. But that's entirely unreasonable to be used. Too much overhead. And parameterized SQL is certainly hard to get a grasp on, when mixing up commands and values into an SQL string are that simple in PHP. 
	Trust the herd.
	XHTML-strict all the way
	You know what's holding the web application business back? That's right, procedural HTML.
	It should be common knowledge by now that HTML is not a real standard, or at least not based on real standards (lets disregard SGML as too fancy). It's only XML from here on out.
	Must use XHTML-Strict with E_STRICTINESS in XPHP.
	The obvious advantage of XHTML is that it's hip. It adds some other things that we must take care to use right:
	Outright disregard HTML4. It's like totally old and PHP4.
	And HTML5 won't be usable before 2023 when it's 120% standardized. And IE9 is the yardstick for everything.
	Upcoming Topics
	Enterprisey coding standards
	someCamelMethods
	\deeply\nested\name\spaces

	FAQ and Excuse Chapter
	Afterword


